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Prologue: A lefter to my students

Dear Students:
| get it.

Please believe me when | say that | completely understand, from firsthand experience, that
statistics is rough. | was forced to take an introductory statistics course as part of my education,
and | went in to it with dread. To be honest, for that first semester, | hated statistics. | was
fortunate enough to have a wonderful professor who was knowledgeable and passionate about
the subject. Nevertheless, I didn’t understand what was going on, why I was required to take the
course, or why any of it mattered to my major or my life.

Now, almost ten years later, | am deeply in love with statistics. Once | understood the logic
behind statistics (and I promise, it is there, even if you don’t see it at first), everything became
crystal clear. More importantly, it enabled me to use that same logic not on numerical data but in
my everyday life.

We are constantly bombarded by information, and finding a way to filter that information in an
objective way is crucial to surviving this onslaught with your sanity intact. This is what statistics,
and logic we use in it, enables us to do. Through the lens of statistics, we learn to find the signal
hidden in the noise when it is there and to know when an apparent trend or pattern is really just
randomness.

| understand that this is a foreign language to most people, and it was for me as well. 1 also
understand that it can quickly become esoteric, complicated, and overwhelming. | encourage you
to persist. Eventually, a lightbulb will turn on, and your life will be illuminated in a way it never
has before.

| say all this to communicate to you that I am on your side. | have been in your seat, and | have
agonized over these same concepts. Everything in this text has been put together in a way to
convey not just formulae for manipulating numbers but to make connections across different
chapters, topics, and methods, to demonstrate that it is all useful and important.

So I say again: | get it. I am on your side, and together, we will learn to do some amazing things.

Garett C. Foster, Ph.D.
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Unit 1 — Fundamentals of Statistics

The first unit in this course will introduce you to the principles of statistics and
why we study and use them in the behavioral sciences. It covers the basic
terminology and notation used for statistics, as well as how behavioral sciences
think about, use, interpret, and communicate information and data. The unit will
conclude with a brief introduction to concepts in probability that underlie how
scientists perform data analysis. The material in this unit will serve as the building
blocks for the logic and application of hypothesis testing, which is introduced in
unit 2 and comprises the rest of the material in the course.

Pg. 7



Chapter 1: Infroduction

This chapter provides an overview of statistics as a field of study and presents
terminology that will be used throughout the course.

What are staftisticse

Statistics include numerical facts and figures. For instance:

The largest earthquake measured 9.2 on the Richter scale.

Men are at least 10 times more likely than women to commit murder.
One in every 8 South Africans is HIV positive.

By the year 2020, there will be 15 people aged 65 and over for every
new baby born.

The study of statistics involves math and relies upon calculations of numbers. But
it also relies heavily on how the numbers are chosen and how the statistics are
interpreted. For example, consider the following three scenarios and the
interpretations based upon the presented statistics. You will find that the numbers
may be right, but the interpretation may be wrong. Try to identify a major flaw
with each interpretation before we describe it.

1) A new advertisement for Ben and Jerry's ice cream introduced in
late May of last year resulted in a 30% increase in ice cream sales for
the following three months. Thus, the advertisement was effective.

A major flaw is that ice cream consumption generally increases in the
months of June, July, and August regardless of advertisements. This
effect is called a history effect and leads people to interpret outcomes
as the result of one variable when another variable (in this case, one
having to do with the passage of time) is actually responsible.

2) The more churches in a city, the more crime there is. Thus,
churches lead to crime.

A major flaw is that both increased churches and increased crime rates
can be explained by larger populations. In bigger cities, there are both
more churches and more crime. This problem, which we will discuss

pg. 8



in more detail in Chapter 6, refers to the third-variable problem.
Namely, a third variable can cause both situations; however, people
erroneously believe that there is a causal relationship between the two

primary variables rather than recognize that a third variable can cause
both.

3) 75% more interracial marriages are occurring this year than 25
years ago. Thus, our society accepts interracial marriages.

A major flaw is that we don't have the information that we need. What
is the rate at which marriages are occurring? Suppose only 1% of
marriages 25 years ago were interracial and so now 1.75% of
marriages are interracial (1.75 1s 75% higher than 1). But this latter
number is hardly evidence suggesting the acceptability of interracial
marriages. In addition, the statistic provided does not rule out the
possibility that the number of interracial marriages has seen dramatic
fluctuations over the years and this year is not the highest. Again,
there is simply not enough information to understand fully the impact
of the statistics.

As a whole, these examples show that statistics are not only facts and figures; they
are something more than that. In the broadest sense, “statistics” refers to a range of
techniques and procedures for analyzing, interpreting, displaying, and making
decisions based on data.

Statistics is the language of science and data. The ability to understand and
communicate using statistics enables researchers from different labs, different
languages, and different fields articulate to one another exactly what they have
found in their work. It is an objective, precise, and powerful tool in science and in
everyday life.

What statistics are noft.

Many psychology students dread the idea of taking a statistics course, and more
than a few have changed majors upon learning that it is a requirement. That is
because many students view statistics as a math class, which is actually not true.
While many of you will not believe this or agree with it, statistics isn’t math.
Although math is a central component of it, statistics is a broader way of
organizing, interpreting, and communicating information in an objective manner.
Indeed, great care has been taken to eliminate as much math from this course as
possible (students who do not believe this are welcome to ask the professor what
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matrix algebra is). Statistics is a way of viewing reality as it exists around us in a
way that we otherwise could not.

Why do we study statisticse

Virtually every student of the behavioral sciences takes some form of statistics
class. This is because statistics is how we communicate in science. It serves as the
link between a research idea and usable conclusions. Without statistics, we would
be unable to interpret the massive amounts of information contained in data. Even
small datasets contain hundreds — if not thousands — of numbers, each representing
a specific observation we made. Without a way to organize these numbers into a
more interpretable form, we would be lost, having wasted the time and money of
our participants, ourselves, and the communities we serve.

Beyond its use in science, however, there is a more personal reason to study
statistics. Like most people, you probably feel that it is important to “take control
of your life.” But what does this mean? Partly, it means being able to properly
evaluate the data and claims that bombard you every day. If you cannot distinguish
good from faulty reasoning, then you are vulnerable to manipulation and to
decisions that are not in your best interest. Statistics provides tools that you need in
order to react intelligently to information you hear or read. In this sense, statistics
1s one of the most important things that you can study.

To be more specific, here are some claims that we have heard on several occasions.
(We are not saying that each one of these claims is true!)
e 4 out of 5 dentists recommend Dentine.
e Almost 85% of lung cancers in men and 45% in women are tobacco-related.
e Condoms are effective 94% of the time.
e Pecople tend to be more persuasive when they look others directly in the eye
and speak loudly and quickly.
e Women make 75 cents to every dollar a man makes when they work the
same job.
e A surprising new study shows that eating egg whites can increase one's life
span.
e People predict that it is very unlikely there will ever be another baseball
player with a batting average over 400.
e There is an 80% chance that in a room full of 30 people that at least two
people will share the same birthday.
e 79.48% of all statistics are made up on the spot.
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All of these claims are statistical in character. We suspect that some of them sound
familiar; if not, we bet that you have heard other claims like them. Notice how
diverse the examples are. They come from psychology, health, law, sports,
business, etc. Indeed, data and data interpretation show up in discourse from
virtually every facet of contemporary life.

Statistics are often presented in an effort to add credibility to an argument or
advice. You can see this by paying attention to television advertisements. Many of
the numbers thrown about in this way do not represent careful statistical analysis.
They can be misleading and push you into decisions that you might find cause to
regret. For these reasons, learning about statistics is a long step towards taking
control of your life. (It is not, of course, the only step needed for this purpose.) The
purpose of this course, beyond preparing you for a career in psychology, is to help
you learn statistical essentials. It will make you into an intelligent consumer of
statistical claims.

You can take the first step right away. To be an intelligent consumer of statistics,
your first reflex must be to question the statistics that you encounter. The British
Prime Minister Benjamin Disraeli is quoted by Mark Twain as having said, “There
are three kinds of lies -- lies, damned lies, and statistics.” This quote reminds us
why it is so important to understand statistics. So let us invite you to reform your
statistical habits from now on. No longer will you blindly accept numbers or
findings. Instead, you will begin to think about the numbers, their sources, and
most importantly, the procedures used to generate them.

The above section puts an emphasis on defending ourselves against fraudulent
claims wrapped up as statistics, but let us look at a more positive note. Just as
important as detecting the deceptive use of statistics is the appreciation of the
proper use of statistics. You must also learn to recognize statistical evidence that
supports a stated conclusion. Statistics are all around you, sometimes used well,
sometimes not. We must learn how to distinguish the two cases. In doing so,
statistics will likely be the course you use most in your day to day life, even if you
do not ever run a formal analysis again.

Types of Data and How to Collect Them
In order to use statistics, we need data to analyze. Data come in an amazingly

diverse range of formats, and each type gives us a unique type of information. In
virtually any form, data represent the measured value of variables. A variable is
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simply a characteristic or feature of the thing we are interested in understanding. In
psychology, we are interested in people, so we might get a group of people
together and measure their levels of stress (one variable), anxiety (a second
variable), and their physical health (a third variable). Once we have data on these
three variables, we can use statistics to understand if and how they are related.
Before we do so, we need to understand the nature of our data: what they represent
and where they came from.

Types of Variables

When conducting research, experimenters often manipulate variables. For
example, an experimenter might compare the effectiveness of four types of
antidepressants. In this case, the variable is “type of antidepressant.” When a
variable is manipulated by an experimenter, it is called an independent variable.
The experiment seeks to determine the effect of the independent variable on relief
from depression. In this example, relief from depression is called a dependent
variable. In general, the independent variable is manipulated by the experimenter
and its effects on the dependent variable are measured.

Example #1: Can blueberries slow down aging? A study indicates that antioxidants
found in blueberries may slow down the process of aging. In this study, 19-month-
old rats (equivalent to 60-year-old humans) were fed either their standard diet or a
diet supplemented by either blueberry, strawberry, or spinach powder. After eight
weeks, the rats were given memory and motor skills tests. Although all
supplemented rats showed improvement, those supplemented with blueberry
powder showed the most notable improvement.

1. What is the independent variable? (dietary supplement: none,

blueberry, strawberry, and spinach)

2. What are the dependent variables? (memory test and motor skills

test)

Example #2: Does beta-carotene protect against cancer? Beta-carotene
supplements have been thought to protect against cancer. However, a study
published in the Journal of the National Cancer Institute suggests this is false. The
study was conducted with 39,000 women aged 45 and up. These women were
randomly assigned to receive a beta-carotene supplement or a placebo, and their
health was studied over their lifetime. Cancer rates for women taking the beta-
carotene supplement did not differ systematically from the cancer rates of those
women taking the placebo.
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1. What is the independent variable? (supplements: beta-carotene or
placebo)
2. What is the dependent variable? (occurrence of cancer)

Example #3: How bright is right? An automobile manufacturer wants to know how
bright brake lights should be in order to minimize the time required for the driver
of a following car to realize that the car in front is stopping and to hit the brakes.

1. What is the independent variable? (brightness of brake lights)

2. What is the dependent variable? (time to hit brakes)

Levels of an Independent Variable

If an experiment compares an experimental treatment with a control treatment,
then the independent variable (type of treatment) has two levels: experimental and
control. If an experiment were comparing five types of diets, then the independent
variable (type of diet) would have 5 levels. In general, the number of levels of an
independent variable is the number of experimental conditions.

Qualitative and Quantitative Variables

An important distinction between variables is between qualitative variables and
quantitative variables. Qualitative variables are those that express a qualitative
attribute such as hair color, eye color, religion, favorite movie, gender, and so on.
The values of a qualitative variable do not imply a numerical ordering. Values of
the variable “religion” differ qualitatively; no ordering of religions is implied.
Qualitative variables are sometimes referred to as categorical variables.
Quantitative variables are those variables that are measured in terms of numbers.
Some examples of quantitative variables are height, weight, and shoe size.

In the study on the effect of diet discussed previously, the independent variable
was type of supplement: none, strawberry, blueberry, and spinach. The variable
“type of supplement” is a qualitative variable; there is nothing quantitative about it.
In contrast, the dependent variable “memory test” is a quantitative variable since
memory performance was measured on a quantitative scale (number correct).

Discrete and Continuous Variables

Variables such as number of children in a household are called discrete variables
since the possible scores are discrete points on the scale. For example, a household
could have three children or six children, but not 4.53 children. Other variables
such as “time to respond to a question” are continuous variables since the scale is
continuous and not made up of discrete steps. The response time could be 1.64
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seconds, or it could be 1.64237123922121 seconds. Of course, the practicalities of
measurement preclude most measured variables from being truly continuous.

Levels of Measurement

Before we can conduct a statistical analysis, we need to measure our dependent
variable. Exactly how the measurement is carried out depends on the type of
variable involved in the analysis. Different types are measured differently. To
measure the time taken to respond to a stimulus, you might use a stop watch. Stop
watches are of no use, of course, when it comes to measuring someone's attitude
towards a political candidate. A rating scale is more appropriate in this case (with
labels like “very favorable,” “somewhat favorable,” etc.). For a dependent variable
such as “favorite color,” you can simply note the color-word (like “red”) that the
subject offers.

Although procedures for measurement differ in many ways, they can be classified
using a few fundamental categories. In a given category, all of the procedures share
some properties that are important for you to know about. The categories are called
“scale types,” or just “scales,” and are described in this section.

Nominal scales
When measuring using a nominal scale, one simply names or categorizes
responses. Gender, handedness, favorite color, and religion are examples of
variables measured on a nominal scale. The essential point about nominal scales is
that they do not imply any ordering among the responses. For example, when
classifying people according to their favorite color, there is no sense in which
green is placed “ahead of” blue. Responses are merely categorized. Nominal scales
embody the lowest level of measurement.

Ordinal scales
A researcher wishing to measure consumers' satisfaction with their microwave
ovens might ask them to specify their feelings as either “very dissatisfied,”
“somewhat dissatisfied,” “somewhat satisfied,” or “very satisfied.” The items in
this scale are ordered, ranging from least to most satisfied. This is what
distinguishes ordinal from nominal scales. Unlike nominal scales, ordinal scales
allow comparisons of the degree to which two subjects possess the dependent
variable. For example, our satisfaction ordering makes it meaningful to assert that
one person is more satisfied than another with their microwave ovens. Such an
assertion reflects the first person's use of a verbal label that comes later in the list
than the label chosen by the second person.
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On the other hand, ordinal scales fail to capture important information that will be
present in the other scales we examine. In particular, the difference between two
levels of an ordinal scale cannot be assumed to be the same as the difference
between two other levels. In our satisfaction scale, for example, the difference
between the responses “very dissatisfied” and “somewhat dissatisfied” is probably
not equivalent to the difference between “somewhat dissatisfied” and “somewhat
satisfied.” Nothing in our measurement procedure allows us to determine whether
the two differences reflect the same difference in psychological satisfaction.
Statisticians express this point by saying that the differences between adjacent
scale values do not necessarily represent equal intervals on the underlying scale
giving rise to the measurements. (In our case, the underlying scale is the true
feeling of satisfaction, which we are trying to measure.)

What if the researcher had measured satisfaction by asking consumers to indicate
their level of satisfaction by choosing a number from one to four? Would the
difference between the responses of one and two necessarily reflect the same
difference in satisfaction as the difference between the responses two and three?
The answer 1s No. Changing the response format to numbers does not change the
meaning of the scale. We still are in no position to assert that the mental step from
1 to 2 (for example) is the same as the mental step from 3 to 4.

Interval scales
Interval scales are numerical scales in which intervals have the same interpretation
throughout. As an example, consider the Fahrenheit scale of temperature. The
difference between 30 degrees and 40 degrees represents the same temperature
difference as the difference between 80 degrees and 90 degrees. This is because
each 10-degree interval has the same physical meaning (in terms of the kinetic
energy of molecules).

Interval scales are not perfect, however. In particular, they do not have a true zero
point even if one of the scaled values happens to carry the name “zero.” The
Fahrenheit scale illustrates the issue. Zero degrees Fahrenheit does not represent
the complete absence of temperature (the absence of any molecular kinetic
energy). In reality, the label “zero” is applied to its temperature for quite accidental
reasons connected to the history of temperature measurement. Since an interval
scale has no true zero point, it does not make sense to compute ratios of
temperatures. For example, there is no sense in which the ratio of 40 to 20 degrees
Fahrenheit is the same as the ratio of 100 to 50 degrees; no interesting physical
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property is preserved across the two ratios. After all, if the “zero” label were
applied at the temperature that Fahrenheit happens to label as 10 degrees, the two
ratios would instead be 30 to 10 and 90 to 40, no longer the same! For this reason,
it does not make sense to say that 80 degrees is “twice as hot” as 40 degrees. Such
a claim would depend on an arbitrary decision about where to “start” the
temperature scale, namely, what temperature to call zero (whereas the claim is
intended to make a more fundamental assertion about the underlying physical
reality).

Ratio scales
The ratio scale of measurement is the most informative scale. It is an interval scale
with the additional property that its zero position indicates the absence of the
quantity being measured. You can think of a ratio scale as the three earlier scales
rolled up in one. Like a nominal scale, it provides a name or category for each
object (the numbers serve as labels). Like an ordinal scale, the objects are ordered
(in terms of the ordering of the numbers). Like an interval scale, the same
difference at two places on the scale has the same meaning. And in addition, the
same ratio at two places on the scale also carries the same meaning.

The Fahrenheit scale for temperature has an arbitrary zero point and is therefore
not a ratio scale. However, zero on the Kelvin scale is absolute zero. This makes
the Kelvin scale a ratio scale. For example, if one temperature is twice as high as
another as measured on the Kelvin scale, then it has twice the kinetic energy of the
other temperature.

Another example of a ratio scale is the amount of money you have in your pocket
right now (25 cents, 55 cents, etc.). Money is measured on a ratio scale because, in
addition to having the properties of an interval scale, it has a true zero point: if you
have zero money, this implies the absence of money. Since money has a true zero
point, it makes sense to say that someone with 50 cents has twice as much money
as someone with 25 cents (or that Bill Gates has a million times more money than
you do).

What level of measurement is used for psychological
variables?

Rating scales are used frequently in psychological research. For example,
experimental subjects may be asked to rate their level of pain, how much they like
a consumer product, their attitudes about capital punishment, their confidence in an
answer to a test question. Typically these ratings are made on a 5-point or a 7-point
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scale. These scales are ordinal scales since there is no assurance that a given
difference represents the same thing across the range of the scale. For example,
there is no way to be sure that a treatment that reduces pain from a rated pain level
of 3 to a rated pain level of 2 represents the same level of relief as a treatment that
reduces pain from a rated pain level of 7 to a rated pain level of 6.

In memory experiments, the dependent variable is often the number of items
correctly recalled. What scale of measurement is this? You could reasonably argue
that it is a ratio scale. First, there is a true zero point; some subjects may get no
items correct at all. Moreover, a difference of one represents a difference of one
item recalled across the entire scale. It is certainly valid to say that someone who
recalled 12 items recalled twice as many items as someone who recalled only 6
1tems.

But number-of-items recalled is a more complicated case than it appears at first.
Consider the following example in which subjects are asked to remember as many
items as possible from a list of 10. Assume that (a) there are 5 easy items and 5
difficult items, (b) half of the subjects are able to recall all the easy items and
different numbers of difficult items, while (c) the other half of the subjects are
unable to recall any of the difficult items but they do remember different numbers
of easy items. Some sample data are shown below.

Subject Easy Items
A ol o 1| 1| of of O o] of O 2
B 1] o} 1} 1y o] of o] o] o O 3
C 1] 11 11 1 1 1 1 0 0 0 7
D 11 11 11 1 1 0 1 1 0 1 8

Let's compare (1) the difference between Subject A's score of 2 and Subject B's
score of 3 and (i1) the difference between Subject C's score of 7 and Subject D's
score of 8. The former difference is a difference of one easy item; the latter
difference is a difference of one difficult item. Do these two differences necessarily
signify the same difference in memory? We are inclined to respond “No” to this
question since only a little more memory may be needed to retain the additional
easy item whereas a lot more memory may be needed to retain the additional hard
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item. The general point is that it is often inappropriate to consider psychological
measurement scales as either interval or ratio.

Conseqguences of level of measurement

Why are we so interested in the type of scale that measures a dependent variable?
The crux of the matter is the relationship between the variable's level of
measurement and the statistics that can be meaningfully computed with that
variable. For example, consider a hypothetical study in which 5 children are asked
to choose their favorite color from blue, red, yellow, green, and purple. The
researcher codes the results as follows:

Color Code

Blue 1
Red 2
Yellow 3
Green 4
Purple 5

This means that if a child said her favorite color was “Red,” then the choice was
coded as “2,” if the child said her favorite color was “Purple,” then the response
was coded as 5, and so forth. Consider the following hypothetical data:

Subject Color Code
| Blue 1
2 Blue 1
3 Green 4
4 Green 4
5 Purple 5

Each code is a number, so nothing prevents us from computing the average code
assigned to the children. The average happens to be 3, but you can see that it would
be senseless to conclude that the average favorite color is yellow (the color with a
code of 3). Such nonsense arises because favorite color is a nominal scale, and
taking the average of its numerical labels is like counting the number of letters in
the name of a snake to see how long the beast is.

Does it make sense to compute the mean of numbers measured on an ordinal scale?
This is a difficult question, one that statisticians have debated for decades. The
prevailing (but by no means unanimous) opinion of statisticians is that for almost
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all practical situations, the mean of an ordinally-measured variable is a meaningful
statistic. However, there are extreme situations in which computing the mean of an
ordinally-measured variable can be very misleading.

Collecting Data

We are usually interested in understanding a specific group of people. This group
Is known as the population of interest, or simply the population. The population is
the collection of all people who have some characteristic in common; it can be as
broad as “all people” if we have a very general research question about human
psychology, or it can be extremely narrow, such as “all freshmen psychology
majors at Midwestern public universities” if we have a specific group in mind.

Populations and samples

In statistics, we often rely on a sample --- that is, a small subset of a larger set of
data --- to draw inferences about the larger set. The larger set is known as the
population from which the sample is drawn.

Example #1: You have been hired by the National Election
Commission to examine how the American people feel about the
fairness of the voting procedures in the U.S. Who will you ask?

It is not practical to ask every single American how he or she feels about the
fairness of the voting procedures. Instead, we query a relatively small number of
Americans, and draw inferences about the entire country from their responses. The
Americans actually queried constitute our sample of the larger population of all
Americans.

A sample is typically a small subset of the population. In the case of voting
attitudes, we would sample a few thousand Americans drawn from the hundreds of
millions that make up the country. In choosing a sample, it is therefore crucial that
it not over-represent one kind of citizen at the expense of others. For example,
something would be wrong with our sample if it happened to be made up entirely
of Florida residents. If the sample held only Floridians, it could not be used to infer
the attitudes of other Americans. The same problem would arise if the sample were
comprised only of Republicans. Inferences from statistics are based on the
assumption that sampling is representative of the population. If the sample is not
representative, then the possibility of sampling bias occurs. Sampling bias means
that our conclusions apply only to our sample and are not generalizable to the full
population.
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Example #2: We are interested in examining how many math classes
have been taken on average by current graduating seniors at American
colleges and universities during their four years in school. Whereas
our population in the last example included all US citizens, now it
involves just the graduating seniors throughout the country. This is
still a large set since there are thousands of colleges and universities,
each enrolling many students. (New York University, for example,
enrolls 48,000 students.) It would be prohibitively costly to examine
the transcript of every college senior. We therefore take a sample of
college seniors and then make inferences to the entire population
based on what we find. To make the sample, we might first choose
some public and private colleges and universities across the United
States. Then we might sample 50 students from each of these
Institutions. Suppose that the average number of math classes taken by
the people in our sample were 3.2. Then we might speculate that 3.2
approximates the number we would find if we had the resources to
examine every senior in the entire population. But we must be careful
about the possibility that our sample is non-representative of the
population. Perhaps we chose an overabundance of math majors, or
chose too many technical institutions that have heavy math
requirements. Such bad sampling makes our sample unrepresentative
of the population of all seniors.

To solidify your understanding of sampling bias, consider the following example.
Try to identify the population and the sample, and then reflect on whether the
sample is likely to yield the information desired.

Example #3: A substitute teacher wants to know how students in the
class did on their last test. The teacher asks the 10 students sitting in
the front row to state their latest test score. He concludes from their
report that the class did extremely well. What is the sample? What is
the population? Can you identify any problems with choosing the
sample in the way that the teacher did?

In Example #3, the population consists of all students in the class. The sample is
made up of just the 10 students sitting in the front row. The sample is not likely to
be representative of the population. Those who sit in the front row tend to be more
interested in the class and tend to perform higher on tests. Hence, the sample may
perform at a higher level than the population.
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Example #4: A coach is interested in how many cartwheels the
average college freshmen at his university can do. Eight volunteers
from the freshman class step forward. After observing their
performance, the coach concludes that college freshmen can do an
average of 16 cartwheels in a row without stopping.

In Example #4, the population is the class of all freshmen at the coach's university.
The sample is composed of the 8 volunteers. The sample is poorly chosen because
volunteers are more likely to be able to do cartwheels than the average freshman;
people who can't do cartwheels probably did not volunteer! In the example, we are
also not told of the gender of the volunteers. Were they all women, for example?
That might affect the outcome, contributing to the non-representative nature of the
sample (if the school is co-ed).

Simple Random Sampling

Researchers adopt a variety of sampling strategies. The most straightforward is
simple random sampling. Such sampling requires every member of the population
to have an equal chance of being selected into the sample. In addition, the selection
of one member must be independent of the selection of every other member. That
1s, picking one member from the population must not increase or decrease the
probability of picking any other member (relative to the others). In this sense, we
can say that simple random sampling chooses a sample by pure chance. To check
your understanding of simple random sampling, consider the following example.
What is the population? What is the sample? Was the sample picked by simple
random sampling? Is it biased?

Example #5: A research scientist is interested in studying the
experiences of twins raised together versus those raised apart. She
obtains a list of twins from the National Twin Registry, and selects
two subsets of individuals for her study. First, she chooses all those in
the registry whose last name begins with Z. Then she turns to all those
whose last name begins with B. Because there are so many names that
start with B, however, our researcher decides to incorporate only
every other name into her sample. Finally, she mails out a survey and
compares characteristics of twins raised apart versus together.

In Example #5, the population consists of all twins recorded in the National Twin
Registry. It is important that the researcher only make statistical generalizations to
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the twins on this list, not to all twins in the nation or world. That is, the National
Twin Registry may not be representative of all twins. Even if inferences are limited
to the Registry, a number of problems affect the sampling procedure we described.
For instance, choosing only twins whose last names begin with Z does not give
every individual an equal chance of being selected into the sample. Moreover, such
a procedure risks over-representing ethnic groups with many surnames that begin
with Z. There are other reasons why choosing just the Z's may bias the sample.
Perhaps such people are more patient than average because they often find
themselves at the end of the line! The same problem occurs with choosing twins
whose last name begins with B. An additional problem for the B's is that the
“every-other-one” procedure disallowed adjacent names on the B part of the list
from being both selected. Just this defect alone means the sample was not formed
through simple random sampling.

Sample size matters

Recall that the definition of a random sample is a sample in which every member
of the population has an equal chance of being selected. This means that the
sampling procedure rather than the results of the procedure define what it means
for a sample to be random. Random samples, especially if the sample size is small,
are not necessarily representative of the entire population. For example, if a
random sample of 20 subjects were taken from a population with an equal number
of males and females, there would be a nontrivial probability (0.06) that 70% or
more of the sample would be female. Such a sample would not be representative,
although it would be drawn randomly. Only a large sample size makes it likely that
our sample is close to representative of the population. For this reason, inferential
statistics take into account the sample size when generalizing results from samples
to populations. In later chapters, you'll see what kinds of mathematical techniques
ensure this sensitivity to sample size.

More complex sampling

Sometimes it is not feasible to build a sample using simple random sampling. To
see the problem, consider the fact that both Dallas and Houston are competing to
be hosts of the 2012 Olympics. Imagine that you are hired to assess whether most
Texans prefer Houston to Dallas as the host, or the reverse. Given the
impracticality of obtaining the opinion of every single Texan, you must construct a
sample of the Texas population. But now notice how difficult it would be to
proceed by simple random sampling. For example, how will you contact those
individuals who don’t vote and don’t have a phone? Even among people you find
in the telephone book, how can you identify those who have just relocated to
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California (and had no reason to inform you of their move)? What do you do about
the fact that since the beginning of the study, an additional 4,212 people took up
residence in the state of Texas? As you can see, it is sometimes very difficult to
develop a truly random procedure. For this reason, other kinds of sampling
techniques have been devised. We now discuss two of them.

Stratified Sampling

Since simple random sampling often does not ensure a representative sample, a
sampling method called stratified random sampling is sometimes used to make the
sample more representative of the population. This method can be used if the
population has a number of distinct “strata” or groups. In stratified sampling, you
first identify members of your sample who belong to each group. Then you
randomly sample from each of those subgroups in such a way that the sizes of the
subgroups in the sample are proportional to their sizes in the population.

Let's take an example: Suppose you were interested in views of capital punishment
at an urban university. You have the time and resources to interview 200 students.
The student body is diverse with respect to age; many older people work during the
day and enroll in night courses (average age is 39), while younger students
generally enroll in day classes (average age of 19). It is possible that night students
have different views about capital punishment than day students. If 70% of the
students were day students, it makes sense to ensure that 70% of the sample
consisted of day students. Thus, your sample of 200 students would consist of 140
day students and 60 night students. The proportion of day students in the sample
and in the population (the entire university) would be the same. Inferences to the
entire population of students at the university would therefore be more secure.

Convenience Sampling

Not all sampling methods are perfect, and sometimes that’s okay. For example, if
we are beginning research into a completely unstudied area, we may sometimes
take some shortcuts to quickly gather data and get a general idea of how things
work before fully investing a lot of time and money into well-designed research
projects with proper sampling. This is known as convenience sampling, named for
its ease of use. In limited cases, such as the one just described, convenience
sampling is okay because we intend to follow up with a representative sample.
Unfortunately, sometimes convenience sampling is used due only to its
convenience without the intent of improving on it in future work.
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Type of Research Designs

Research studies come in many forms, and, just like with the different types of data
we have, different types of studies tell us different things. The choice of research
design is determined by the research question and the logistics involved. Though a
complete understanding of different research designs is the subject for at least one
full class, if not more, a basic understanding of the principles is useful here. There
are three types of research designs we will discuss: experimental, quasi-
experimental, and non-experimental.

Experimental Designs

If we want to know if a change in one variable causes a change in another variable,
we must use a true experiment. An experiment is defined by the use of random
assignment to treatment conditions and manipulation of the independent variable.
To understand what this means, let’s look at an example:

A clinical researcher wants to know if a newly developed drug is effective in
treating the flu. Working with collaborators at several local hospitals, she randomly
samples 40 flu patients and randomly assigns each one to one of two conditions:
Group A receives the new drug and Group B received a placebo. She measures the
symptoms of all participants after 1 week to see if there is a difference in
symptoms between the groups.

In the example, the independent variable is the drug treatment; we manipulate it
into 2 levels: new drug or placebo. Without the researcher administering the drug
(i.e. manipulating the independent variable), there would be no difference between
the groups. Each person, after being randomly sampled to be in the research, was
then randomly assigned to one of the 2 groups. That is, random sampling and
random assignment are not the same thing and cannot be used interchangeably. For
research to be a true experiment, random assignment must be used. For research to
be representative of the population, random sampling must be used. The use of
both techniques helps ensure that there are no systematic differences between the
groups, thus eliminating the potential for sampling bias.

The dependent variable in the example is flu symptoms. Barring any other
intervention, we would assume that people in both groups, on average, get better at
roughly the same rate. Because there are no systematic differences between the 2
groups, if the researcher does find a difference in symptoms, she can confidently
attribute it to the effectiveness of the new drug.
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Quasi-Experimental Designs

Quasi-experimental research involves getting as close as possible to the conditions
of a true experiment when we cannot meet all requirements. Specifically, a quasi-
experiment involves manipulating the independent variable but not randomly
assigning people to groups. There are several reasons this might be used. First, it
may be unethical to deny potential treatment to someone if there is good reason to
believe it will be effective and that the person would unduly suffer if they did not
receive it. Alternatively, it may be impossible to randomly assign people to groups.
Consider the following example:

A professor wants to test out a new teaching method to see if it improves student
learning. Because he is teaching two sections of the same course, he decides to
teach one section the traditional way and the other section using the new method.
At the end of the semester, he compares the grades on the final for each class to see
if there is a difference.

In this example, the professor has manipulated his teaching method, which is the
independent variable, hoping to find a difference in student performance, the
dependent variable. However, because students enroll in courses, he cannot
randomly assign the students to a particular group, thus precluding using a true
experiment to answer his research question. Because of this, we cannot know for
sure that there are no systematic differences between the classes other than
teaching style and therefore cannot determine causality.

Non-Experimental Designs

Finally, non-experimental research (sometimes called correlational research)
involves observing things as they occur naturally and recording our observations as
data. Consider this example:

A data scientist wants to know if there is a relation between how conscientious a
person is and whether that person is a good employee. She hopes to use this
information to predict the job performance of future employees by measuring their
personality when they are still job applicants. She randomly samples volunteer
employees from several different companies, measuring their conscientiousness
and having their bosses rate their performance on the job. She analyzes this data to
find a relation.

Here, it is not possible to manipulate conscientious, so the researcher must gather
data from employees as they are in order to find a relation between her variables.
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Although this technique cannot establish causality, it can still be quite useful. If the
relation between conscientiousness and job performance is consistent, then it
doesn’t necessarily matter is conscientiousness causes good performance or if they
are both caused by something else — she can still measure conscientiousness to
predict future performance. Additionally, these studies have the benefit of
reflecting reality as it actually exists since we as researchers do not change
anything.

Types of Statistical Analyses

Now that we understand the nature of our data, let’s turn to the types of statistics
we can use to interpret them. There are 2 types of statistics: descriptive and
inferential.

Descriptive Statistics

Descriptive statistics are numbers that are used to summarize and describe data.
The word “data” refers to the information that has been collected from an
experiment, a survey, an historical record, etc. (By the way, “data” is plural. One
piece of information is called a “datum.”) If we are analyzing birth certificates, for
example, a descriptive statistic might be the percentage of certificates issued in
New York State, or the average age of the mother. Any other number we choose to
compute also counts as a descriptive statistic for the data from which the statistic is
computed. Several descriptive statistics are often used at one time to give a full
picture of the data.

Descriptive statistics are just descriptive. They do not involve generalizing beyond
the data at hand. Generalizing from our data to another set of cases is the business
of inferential statistics, which you'll be studying in another section. Here we focus
on (mere) descriptive statistics.
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Some descriptive statistics are shown in Table 1. The table shows the average
salaries for various occupations in the United States in 1999.

'Salary ~ Occupation

$112,760 | pediatricians

$106,130 | dentists

$100,090 | podiatrists

$76,140 | physicists

$53,410 | architects,

$49,720 |school, clinical, and
counseling psychologists

$47,910 |flight attendants

$39,560 | elementary school teachers

$38,710 | police officers

$18,980 | floral designers

Table 1. Average salaries for various occupations in 1999.

Descriptive statistics like these offer insight into American society. It is interesting
to note, for example, that we pay the people who educate our children and who
protect our citizens a great deal less than we pay people who take care of our feet
or our teeth.

For more descriptive statistics, consider Table 2. It shows the number of unmarried
men per 100 unmarried women in U.S. Metro Areas in 1990. From this table we
see that men outnumber women most in Jacksonville, NC, and women outnumber
men most in Sarasota, FL. You can see that descriptive statistics can be useful if
we are looking for an opposite-sex partner! (These data come from the Information
Please Almanac.)
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Cities with mostly Men per  Cities with mostly ~ Men per

men 100 Women women 100 Women
1. Jacksonville, NC 224 1. Sarasota, FL 66
2. Killeen-Temple, 123 2. Bradenton, FL 68
X
3. Fayetteville, NC 118 3. Altoona, PA 69
4. Brazoria, TX 117 4. Springfield, IL 70
5. Lawton, OK 116 5. Jacksonville, TN 70
6. State College, PA 113 6. Gadsden, AL 70
7. Clarksville- )
Hopkinsville, TN-KY 113 7. Wheeling, WV 70
8. Anchorage, Alaska 112 8. Charleston, WV 71
9. Salinas-Seaside-
Monterey, CA 112 9. St. Joseph, MO 71
10. Bryan-College
Station, TX 111 10. Lynchburg, VA 71

Table 2. Number of unmarried men per 100 unmarried women in U.S. Metro Areas
in 1990. NOTE: Unmarried includes never-married, widowed, and divorced
persons, 15 years or older.

These descriptive statistics may make us ponder why the numbers are so disparate
in these cities. One potential explanation, for instance, as to why there are more
women in Florida than men may involve the fact that elderly individuals tend to
move down to the Sarasota region and that women tend to outlive men. Thus, more
women might live in Sarasota than men. However, in the absence of proper data,
this 1s only speculation.
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You probably know that descriptive statistics are central to the world of sports.
Every sporting event produces numerous statistics such as the shooting percentage
of players on a basketball team. For the Olympic marathon (a foot race of 26.2
miles), we possess data that cover more than a century of competition. (The first
modern Olympics took place in 1896.) The following table shows the winning
times for both men and women (the latter have only been allowed to compete since

1984).

Year Winner Country Time

1984 | Joan Benoit USA 2:24:52
1988 | Rosa Mota POR 2:25:40
1992 | Valentina Yegorova uT 2:32:41
1996 | Fatuma Roba ETH 2:26:05
2000 | Naoko Takahashi JPN 2:23:14
2004 | Mizuki Noguchi JPN 2:26:20

| Men

Year Winner Country Time

1896 | Spiridon Louis GRE 2:58:50
1900 | Michel Theato FRA 2:59:45
1904 | Thomas Hicks USA 3:28:53
1906 | Billy Sherring CAN 2:51:23
1908 | Johnny Hayes USA 2:55:18
1912 | Kenneth McArthur S. Afr. 2:36:54
1920 | Hannes Kolehmainen FIN 2:32:35
1924 | Albin Stenroos FIN 2:41:22
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1928 | Boughra EI Ouafi FRA 2:32:57
1932 | Juan Carlos Zabala ARG 2:31:36
1936 | Sohn Kee-Chung JPN 2:29:19
1948 | Delfo Cabrera ARG 2:34:51
1952 | Emil Ztopek CZE 2:23:03
1956 | Alain Mimoun FRA 2:25:00
1960 | Abebe Bikila ETH 2:15:16
1964 | Abebe Bikila ETH 2:12:11
1968 | Mamo Wolde ETH 2:20:26
1972 | Frank Shorter USA 2:12:19
1976 | Waldemar Cierpinski E.Ger 2:09:55
1980 | Waldemar Cierpinski E.Ger 2:11:03
1984 | Carlos Lopes POR 2:09:21
1988 | Gelindo Bordin ITA 2:10:32
1992 | Hwang Young-Cho S. Kor 2:13:23
1996 | Josia Thugwane S. Afr. 2:12:36
2000 | Gezahenge Abera ETH 2:10.10
2004 | Stefano Baldini ITA 2:10:55

Table 3. Winning Olympic marathon times.

There are many descriptive statistics that we can compute from the data in the
table. To gain insight into the improvement in speed over the years, let us divide
the men's times into two pieces, namely, the first 13 races (up to 1952) and the
second 13 (starting from 1956). The mean winning time for the first 13 races is 2
hours, 44 minutes, and 22 seconds (written 2:44:22). The mean winning time for
the second 13 races is 2:13:18. This is quite a difference (over half an hour). Does
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this prove that the fastest men are running faster? Or is the difference just due to
chance, no more than what often emerges from chance differences in performance
from year to year? We can't answer this question with descriptive statistics alone.
All we can affirm is that the two means are “suggestive.”

Examining Table 3 leads to many other questions. We note that Takahashi (the
lead female runner in 2000) would have beaten the male runner in 1956 and all
male runners in the first 12 marathons. This fact leads us to ask whether the gender
gap will close or remain constant. When we look at the times within each gender,
we also wonder how far they will decrease (if at all) in the next century of the
Olympics. Might we one day witness a sub-2 hour marathon? The study of
statistics can help you make reasonable guesses about the answers to these
questions.

It is also important to differentiate what we use to describe populations vs what we
use to describe samples. A population is described by a parameter; the parameter is
the true value of the descriptive in the population, but one that we can never know
for sure. For example, the Bureau of Labor Statistics reports that the average
hourly wage of chefs is $23.87. However, even if this number was computed using
information from every single chef in the United States (making it a parameter), it
would quickly become slightly off as one chef retires and a new chef enters the job
market. Additionally, as noted above, there is virtually no way to collect data from
every single person in a population. In order to understand a variable, we estimate
the population parameter using a sample statistic. Here, the term “statistic” refers
to the specific number we compute from the data (e.g. the average), not the field of
statistics. A sample statistic is an estimate of the true population parameter, and if
our sample is representative of the population, then the statistic is considered to be
a good estimator of the parameter.

Even the best sample will be somewhat off from the full population, earlier
referred to as sampling bias, and as a result, there will always be a tiny discrepancy
between the parameter and the statistic we use to estimate it. This difference is
known as sampling error, and, as we will see throughout the course, understanding
sampling error is the key to understanding statistics. Every observation we make
about a variable, be it a full research study or observing an individual’s behavior, is
incapable of being completely representative of all possibilities for that variable.
Knowing where to draw the line between an unusual observation and a true
difference is what statistics is all about.
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Inferential Statistics

Descriptive statistics are wonderful at telling us what our data look like. However,
what we often want to understand is how our data behave. What variables are
related to other variables? Under what conditions will the value of a variable
change? Are two groups different from each other, and if so, are people within
each group different or similar? These are the questions answered by inferential
statistics, and inferential statistics are how we generalize from our sample back up
to our population. Units 2 and 3 are all about inferential statistics, the formal
analyses and tests we run to make conclusions about our data.

For example, we will learn how to use a t statistic to determine whether people
change over time when enrolled in an intervention. We will also use an F statistic
to determine if we can predict future values on a variable based on current known
values of a variable. There are many types of inferential statistics, each allowing us
insight into a different behavior of the data we collect. This course will only touch
on a small subset (or a sample) of them, but the principles we learn along the way
will make it easier to learn new tests, as most inferential statistics follow the same
structure and format.

Mathematical Noftation

As noted above, statistics is not math. It does, however, use math as a tool. Many
statistical formulas involve summing numbers. Fortunately there is a convenient
notation for expressing summation. This section covers the basics of this
summation notation.

Let's say we have a variable X that represents the weights (in grams) of 4 grapes:

1 4.6
2 5.1
3 4.9
4 4.4

We label Grape 1's weight X, Grape 2's weight X, etc. The following formula
means to sum up the weights of the four grapes:

4
2.
i=1
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The Greek letter ¥ indicates summation. The “i = 17 at the bottom indicates that
the summation is to start with X; and the 4 at the top indicates that the summation
will end with X,4. The “X;” indicates that X is the variable to be summed as i goes
from 1 to 4. Therefore,

4
Z:-:[-=x1+:-:3+:=:3+.1:4=4.5+5.1+4.9+4.4=19

i=1

The symbol

3
2%
=1

indicates that only the first 3 scores are to be summed. The index variable 1 goes
from 1 to 3.

When all the scores of a variable (such as X) are to be summed, it is often
convenient to use the following abbreviated notation:

)X

Thus, when no values of 1 are shown, it means to sum all the values of X.

Many formulas involve squaring numbers before they are summed. This is
indicated as

D X*=46+51"+49+ 44’
=21.16 + 26.01 + 24.01 + 19.36 = 90.54

Notice that:

O x)z £ ) X2
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because the expression on the left means to sum up all the values of X and then
square the sum (19?2 = 361), whereas the expression on the right means to square
the numbers and then sum the squares (90.54, as shown).

Some formulas involve the sum of cross products. Below are the data for variables
X and Y. The cross products (XY) are shown in the third column. The sum of the
cross products is 3 +4 + 21 = 28.

1 3 3
2 2 4
3 7 21

In summation notation, this is written as:

ZEF:EE

Exercises — Ch. 1

1. Inyour own words, describe why we study statistics.
2. For each of the following, determine if the variable is continuous or discrete:
Time taken to read a book chapter
Favorite food
Cognitive ability
Temperature
Letter grade received in a class
3. For each of the following, determine the level of measurement:
a. T-shirt size
b. Time taken to run 100 meter race
c. First, second, and third place in 100 meter race
d. Birthplace
e. Temperature in Celsius
4. What is the difference between a population and a sample? Which is
described by a parameter and which is described by a statistic?
What is sampling bias? What is sampling error?
6. What is the difference between a simple random sample and a stratified
random sample?
What are the two key characteristics of a true experimental design?
8. When would we use a quasi-experimental design?

®oo0 oW

o

=~
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9. Use the following dataset for the computations below:

2 8
3 8
7 4
5 1
9 4

a. =X

b. TY?

c. =XY

d. (ZY)?

10.What are the most common measures of central tendency and spread?

Answers to Odd-Numbered Exercises — Ch. 1
1. Your answer could take many forms but should include information about
objectively interpreting information and/or communicating results and
research conclusions
3. For each of the following, determine the level of measurement:
a. Ordinal
b. Ratio
c. Ordinal
d. Nominal
e. Interval
5. Sampling bias is the difference in demographic characteristics between a
sample and the population it should represent. Sampling error is the
difference between a population parameter and sample statistic that is caused
by random chance due to sampling bias.
7. Random assignment to treatment conditions and manipulation of the
independent variable
9. Use the following dataset for the computations below:
a. 26
b. 161
c. 109
d. 625
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Chapter 2: Describing Data using
Distributions and Graphs

Before we can understand our analyses, we must first understand our data. The first
step in doing this is using tables, charts, graphs, plots, and other visual tools to see
what our data look like.

Graphing Qualitative Variables

When Apple Computer introduced the iMac computer in August 1998, the
company wanted to learn whether the iMac was expanding Apple’s market share.
Was the iMac just attracting previous Macintosh owners? Or was it purchased by
newcomers to the computer market and by previous Windows users who were
switching over? To find out, 500 iMac customers were interviewed. Each customer
was categorized as a previous Macintosh owner, a previous Windows owner, or a
new computer purchaser.

This section examines graphical methods for displaying the results of the
interviews. We’ll learn some general lessons about how to graph data that fall into
a small number of categories. A later section will consider how to graph numerical
data in which each observation is represented by a number in some range. The key
point about the qualitative data that occupy us in the present section is that they do
not come with a pre-established ordering (the way numbers are ordered). For
example, there is no natural sense in which the category of previous Windows
users comes before or after the category of previous Macintosh users. This
situation may be contrasted with quantitative data, such as a person’s weight.
People of one weight are naturally ordered with respect to people of a different
weight.

Frequency Tables

All of the graphical methods shown in this section are derived from frequency
tables. Table 1 shows a frequency table for the results of the iMac study; it shows
the frequencies of the various response categories. It also shows the relative
frequencies, which are the proportion of responses in each category. For example,
the relative frequency for “none” of 0.17 = 85/500.
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\ Previous Ownership Frequency Relative Frequency

None 85 0.17
Windows 60 0.12
Macintosh 355 0.71

Total 500 1

Table 1. Frequency Table for the iMac Data.

Pie Charts

The pie chart in Figure 1 shows the results of the iMac study. In a pie chart, each
category is represented by a slice of the pie. The area of the slice is proportional to
the percentage of responses in the category. This is simply the relative frequency
multiplied by 100. Although most iMac purchasers were Macintosh owners, Apple
was encouraged by the 12% of purchasers who were former Windows users, and
by the 17% of purchasers who were buying a computer for the first time.

MNone

Windows

Macintosh

Figure 1. Pie chart of iMac purchases illustrating frequencies of previous
computer ownership.

Pie charts are effective for displaying the relative frequencies of a small number of
categories. They are not recommended, however, when you have a large number of
categories. Pie charts can also be confusing when they are used to compare the

outcomes of two different surveys or experiments. In an influential book on the use
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of graphs, Edward Tufte asserted “The only worse design than a pie chart is several
of them.”

Here is another important point about pie charts. If they are based on a small
number of observations, it can be misleading to label the pie slices with
percentages. For example, if just 5 people had been interviewed by Apple
Computers, and 3 were former Windows users, it would be misleading to display a
pie chart with the Windows slice showing 60%. With so few people interviewed,
such a large percentage of Windows users might easily have occurred since
chance can cause large errors with small samples. In this case, it is better to alert
the user of the pie chart to the actual numbers involved. The slices should therefore
be labeled with the actual frequencies observed (e.g., 3) instead of with
percentages.

Bar charts

Bar charts can also be used to represent frequencies of different categories. A bar
chart of the iMac purchases is shown in Figure 2. Frequencies are shown on the Y-
axis and the type of computer previously owned is shown on the X-axis. Typically,
the Y-axis shows the number of observations in each category rather than the
percentage of observations in each category as is typical in pie charts.

400

a00

200

Mumber of Buyers

100

Mone Windows Macintosh
Previous Computer

Figure 2. Bar chart of iMac purchases as a function of previous computer
ownership.
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Comparing Distributions

Often we need to compare the results of different surveys, or of different
conditions within the same overall survey. In this case, we are comparing the
“distributions” of responses between the surveys or conditions. Bar charts are often
excellent for illustrating differences between two distributions. Figure 3 shows the
number of people playing card games at the Yahoo web site on a Sunday and on a
Wednesday in the spring of 2001. We see that there were more players overall on
Wednesday compared to Sunday. The number of people playing Pinochle was
nonetheless the same on these two days. In contrast, there were about twice as
many people playing hearts on Wednesday as on Sunday. Facts like these emerge
clearly from a well-designed bar chart.

Poker
Blackjack
Bridge
Gin
Cribbage
Hearts
Canasta
Pinochle

Euchre

Spades

=}

2000 4000 6000
B Wednesday Sunday

Figure 3. A bar chart of the number of people playing different card games
on Sunday and Wednesday.
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The bars in Figure 3 are oriented horizontally rather than vertically. The horizontal
format is useful when you have many categories because there is more room for
the category labels. We’ll have more to say about bar charts when we consider
numerical quantities later in this chapter.

Some graphical mistakes to avoid

Don’t get fancy! People sometimes add features to graphs that don’t help to convey
their information. For example, 3-dimensional bar charts such as the one shown in
Figure 4 are usually not as effective as their two-dimensional counterparts.

A00
350
300
250
200
150
100

50

None Windows Macintash
Figure 4. A three-dimensional version of Figure 2.

Here is another way that fanciness can lead to trouble. Instead of plain bars, it is
tempting to substitute meaningful images. For example, Figure 5 presents the iMac
data using pictures of computers. The heights of the pictures accurately represent
the number of buyers, yet Figure 5 is misleading because the viewer's attention will
be captured by areas. The areas can exaggerate the size differences between the
groups. In terms of percentages, the ratio of previous Macintosh owners to
previous Windows owners is about 6 to 1. But the ratio of the two areas in Figure 5
is about 35 to 1. A biased person wishing to hide the fact that many Windows
owners purchased iMacs would be tempted to use Figure 5 instead of Figure 2!
Edward Tufte coined the term “lie factor” to refer to the ratio of the size of the
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effect shown in a graph to the size of the effect shown in the data. He suggests that
lie factors greater than 1.05 or less than 0.95 produce unacceptable distortion.

400

300 -

200 —

Number of Buyers

a < »

None Windows Macintosh

Previous Computer
Figure 5. A redrawing of Figure 2 with a lie factor greater than 8.

Another distortion in bar charts results from setting the baseline to a value other
than zero. The baseline is the bottom of the Y-axis, representing the least number
of cases that could have occurred in a category. Normally, but not always, this
number should be zero. Figure 6 shows the iMac data with a baseline of 50. Once
again, the differences in areas suggests a different story than the true differences in
percentages. The number of Windows-switchers seems minuscule compared to its
true value of 12%.
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400

430

[
o
=

Number of Buyers
g

120

B0
Monz Windows Macintosh

Previous Computer
Figure 6. A redrawing of Figure 2 with a baseline of 50.

Finally, we note that it is a serious mistake to use a line graph when the X-axis
contains merely qualitative variables. A line graph is essentially a bar graph with
the tops of the bars represented by points joined by lines (the rest of the bar is
suppressed). Figure 7 inappropriately shows a line graph of the card game data
from Yahoo. The drawback to Figure 7 is that it gives the false impression that the
games are naturally ordered in a numerical way when, in fact, they are ordered
alphabetically.
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8000
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3000
2000
1000

0
Blackjack Bridge Canasta Cribbage Euchre Gin Hearts Pinochle Poker  Spades

Figure 7. A line graph used inappropriately to depict the number of people
playing different card games on Sunday and Wednesday.

Summary

Pie charts and bar charts can both be effective methods of portraying qualitative
data. Bar charts are better when there are more than just a few categories and for
comparing two or more distributions. Be careful to avoid creating misleading
graphs.

Graphing Quantitative Variables

As discussed in the section on variables in Chapter 1, quantitative variables are
variables measured on a numeric scale. Height, weight, response time, subjective
rating of pain, temperature, and score on an exam are all examples of quantitative
variables. Quantitative variables are distinguished from categorical (sometimes
called qualitative) variables such as favorite color, religion, city of birth, favorite
sport in which there is no ordering or measuring involved.

There are many types of graphs that can be used to portray distributions of
quantitative variables. The upcoming sections cover the following types of graphs:
(1) stem and leaf displays, (2) histograms, (3) frequency polygons, (4) box plots,
(5) bar charts, (6) line graphs, (7) dot plots, and (8) scatter plots (discussed in a
different chapter). Some graph types such as stem and leaf displays are best-suited
for small to moderate amounts of data, whereas others such as histograms are best-
suited for large amounts of data. Graph types such as box plots are good at
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depicting differences between distributions. Scatter plots are used to show the
relationship between two variables.

Stem and Leaf Displays

A stem and leaf display is a graphical method of displaying data. It is particularly
useful when your data are not too numerous. In this section, we will explain how to
construct and interpret this kind of graph.

As usual, we will start with an example. Consider Table 2 that shows the number
of touchdown passes (TD passes) thrown by each of the 31 teams in the National
Football League in the 2000 season.

37, 33,33, 32, 29, 28,
28,23,22,22,22,21,
21,21, 20, 20, 19, 19,
18,18, 18, 18, 16, 15,
14, 14, 14, 12, 12,9, 6

Table 2. Number of touchdown passes.

A stem and leaf display of the data is shown in Figure 7. The left portion of Figure
1 contains the stems. They are the numbers 3, 2, 1, and 0, arranged as a column to
the left of the bars. Think of these numbers as 10°s digits. A stem of 3, for
example, can be used to represent the 10’s digit in any of the numbers from 30 to
39. The numbers to the right of the bar are leaves, and they represent the 1°s digits.

Every leaf in the graph therefore stands for the result of adding the leaf to 10 times
its stem.

3[2337
2|001112223889
1|2244456888899
0/69

Figure 7. Stem and leaf display of the number of touchdown passes.

To make this clear, let us examine Figure 1 more closely. In the top row, the four
leaves to the right of stem 3 are 2, 3, 3, and 7. Combined with the stem, these
leaves represent the numbers 32, 33, 33, and 37, which are the numbers of TD
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passes for the first four teams in Table 1. The next row has a stem of 2 and 12
leaves. Together, they represent 12 data points, namely, two occurrences of 20 TD
passes, three occurrences of 21 TD passes, three occurrences of 22 TD passes, one
occurrence of 23 TD passes, two occurrences of 28 TD passes, and one occurrence
of 29 TD passes. We leave it to you to figure out what the third row represents.
The fourth row has a stem of 0 and two leaves. It stands for the last two entries in
Table 1, namely 9 TD passes and 6 TD passes. (The latter two numbers may be
thought of as 09 and 06.)

One purpose of a stem and leaf display is to clarify the shape of the distribution.
You can see many facts about TD passes more easily in Figure 1 than in Table 1.
For example, by looking at the stems and the shape of the plot, you can tell that
most of the teams had between 10 and 29 passing TD's, with a few having more
and a few having less. The precise numbers of TD passes can be determined by
examining the leaves.

We can make our figure even more revealing by splitting each stem into two parts.
Figure 2 shows how to do this. The top row is reserved for numbers from 35 to 39
and holds only the 37 TD passes made by the first team in Table 2. The second row
is reserved for the numbers from 30 to 34 and holds the 32, 33, and 33 TD passes
made by the next three teams in the table. You can see for yourself what the other
rows represent.

3|7

3233

2/889
2(001112223
1/56888899
1|22444
0/69

Figure 8. Stem and leaf display with the stems split in two.

Figure 8 is more revealing than Figure 7 because the latter figure lumps too many
values into a single row. Whether you should split stems in a display depends on

the exact form of your data. If rows get too long with single stems, you might try

splitting them into two or more parts.

There is a variation of stem and leaf displays that is useful for comparing
distributions. The two distributions are placed back to back along a common
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column of stems. The result is a “back-to-back stem and leaf display.” Figure 9
shows such a graph. It compares the numbers of TD passes in the 1998 and 2000
seasons. The stems are in the middle, the leaves to the left are for the 1998 data,
and the leaves to the right are for the 2000 data. For example, the second-to-last
row shows that in 1998 there were teams with 11, 12, and 13 TD passes, and in
2000 there were two teams with 12 and three teams with 14 TD passes.

1114
3|7
33213]233
8865 2| 889
4433111012 001112223
987776665 | 1| 56888899
3211122444
710169

Figure 9. Back-to-back stem and leaf display. The left side shows the 1998
TD data and the right side shows the 2000 TD data.

Figure 9 helps us see that the two seasons were similar, but that only in 1998 did
any teams throw more than 40 TD passes.

There are two things about the football data that make them easy to graph with
stems and leaves. First, the data are limited to whole numbers that can be
represented with a one-digit stem and a one-digit leaf. Second, all the numbers are
positive. If the data include numbers with three or more digits, or contain decimals,
they can be rounded to two-digit accuracy. Negative values are also easily handled.
Let us look at another example.

Table 3 shows data from the case study Weapons and Aggression. Each value is
the mean difference over a series of trials between the times it took an
experimental subject to name aggressive words (like “punch”) under two
conditions. In one condition, the words were preceded by a non-weapon word such
as “bug.” In the second condition, the same words were preceded by a weapon
word such as “gun” or “knife.” The issue addressed by the experiment was whether
a preceding weapon word would speed up (or prime) pronunciation of the
aggressive word compared to a non-weapon priming word. A positive difference
implies greater priming of the aggressive word by the weapon word. Negative
differences imply that the priming by the weapon word was less than for a neutral
word.
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43.2,42.9, 35.6, 25.6, 25.4, 23.6, 20.5, 19.9, 14.4, 12.7, 11.3,
10.2,10.0,9.1,7.5,54,4.7,38,2.1,1.2,-0.2, -6.3, -6.7,
-8.8, -10.4, -10.5, -14.9, -14.9, -15.0, -18.5, -27.4

Table 3. The effects of priming (thousandths of a second).

You see that the numbers range from 43.2 to -27.4. The first value indicates that
one subject was 43.2 milliseconds faster pronouncing aggressive words when they
were preceded by weapon words than when preceded by neutral words. The value -
27.4 indicates that another subject was 27.4 milliseconds slower pronouncing
aggressive words when they were preceded by weapon words.

The data are displayed with stems and leaves in Figure 10. Since stem and leaf
displays can only portray two whole digits (one for the stem and one for the leaf)
the numbers are first rounded. Thus, the value 43.2 is rounded to 43 and
represented with a stem of 4 and a leaf of 3. Similarly, 42.9 is rounded to 43. To
represent negative numbers, we simply use negative stems. For example, the
bottom row of the figure represents the number —27. The second-to-last row
represents the numbers -10, -10, -15, etc. Once again, we have rounded the original
values from Table 3.

4133
316
2100456
1100134
011245589

-010679

-11005559

=217

Figure 10. Stem and leaf display with negative numbers and rounding.

Observe that the figure contains a row headed by “0” and another headed by “-0.”
The stem of 0 is for numbers between 0 and 9, whereas the stem of -0 is for
numbers between 0 and -9. For example, the fifth row of the table holds the
numbers 1, 2, 4, 5, 5, 8, 9 and the sixth row holds 0, -6, -7, and -9. Values that are
exactly 0 before rounding should be split as evenly as possible between the “0” and
“-0” rows. In Table 3, none of the values are 0 before rounding. The “0” that
appears in the “-0” row comes from the original value of -0.2 in the table.
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Although stem and leaf displays are unwieldy for large data sets, they are often
useful for data sets with up to 200 observations. Figure 11 portrays the distribution
of populations of 185 US cities in 1998. To be included, a city had to have between
100,000 and 500,000 residents.

4|899

4|6

4]4455

4]333

4|01

3|99

3|677777

3|55

3223

3111

2|2899

2 |66EEET

2444455

2122333

2 | 00OCO0D
1|2853B3E285RE99999995999
1|66GEEETTITTT
1]|444444444444555555555555
1|2222222222222222222333333333
1|000000000000000111111111111111111111111111

Figure 11. Stem and leaf display of populations of 185 US cities with
populations between 100,000 and 500,000 in 1988.

Since a stem and leaf plot shows only two-place accuracy, we had to round the
numbers to the nearest 10,000. For example the largest number (493,559) was
rounded to 490,000 and then plotted with a stem of 4 and a leaf of 9. The fourth
highest number (463,201) was rounded to 460,000 and plotted with a stem of 4 and
a leaf of 6. Thus, the stems represent units of 100,000 and the leaves represent
units of 10,000. Notice that each stem value is split into five parts: 0-1, 2-3, 4-5, 6-
7, and 8-9.

Whether your data can be suitably represented by a stem and leaf display depends
on whether they can be rounded without loss of important information. Also, their
extreme values must fit into two successive digits, as the data in Figure 11 fit into
the 10,000 and 100,000 places (for leaves and stems, respectively). Deciding what
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kind of graph is best suited to displaying your data thus requires good judgment.
Statistics is not just recipes!

Histograms

A histogram is a graphical method for displaying the shape of a distribution. It is

particularly useful when there are a large number of observations. We begin with
an example consisting of the scores of 642 students on a psychology test. The test
consists of 197 items each graded as “correct” or “incorrect.” The students' scores
ranged from 46 to 167.

The first step is to create a frequency table. Unfortunately, a simple frequency table
would be too big, containing over 100 rows. To simplify the table, we group scores
together as shown in Table 4.

Interval's Interval's Class
Lower Limit = Upper Limit Frequency

39.5 49.5 3

495 59.5 10
59.5 69.5 53
69.5 79.5 107
79.5 89.5 147
89.5 99.5 130
99.5 109.5 78
109.5 119.5 59
119.5 129.5 36
129.5 139.5 11
139.5 149.5 6

149.5 159.5 1

159.5 169.5 1

Table 4. Grouped Frequency Distribution of Psychology Test Scores
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To create this table, the range of scores was broken into intervals, called class
intervals. The first interval is from 39.5 to 49.5, the second from 49.5 to 59.5, etc.
Next, the number of scores falling into each interval was counted to obtain the
class frequencies. There are three scores in the first interval, 10 in the second, etc.

Class intervals of width 10 provide enough detail about the distribution to be
revealing without making the graph too “choppy.” More information on choosing
the widths of class intervals is presented later in this section. Placing the limits of
the class intervals midway between two numbers (e.g., 49.5) ensures that every
score will fall in an interval rather than on the boundary between intervals.

In a histogram, the class frequencies are represented by bars. The height of each

bar corresponds to its class frequency. A histogram of these data is shown in
Figure 12.

150

100

Frequency

50

1

395 49.5 585 69.5 78.5 895 a5 1095 1195 1295 1395 1485 1595 1695
Figure 12. Histogram of scores on a psychology test.

The histogram makes it plain that most of the scores are in the middle of the
distribution, with fewer scores in the extremes. You can also see that the
distribution is not symmetric: the scores extend to the right farther than they do to
the left. The distribution is therefore said to be skewed. (We'll have more to say
about shapes of distributions in Chapter 3.)

pg. 50



In our example, the observations are whole numbers. Histograms can also be used
when the scores are measured on a more continuous scale such as the length of
time (in milliseconds) required to perform a task. In this case, there is no need to
worry about fence sitters since they are improbable. (It would be quite a
coincidence for a task to require exactly 7 seconds, measured to the nearest
thousandth of a second.) We are therefore free to choose whole numbers as
boundaries for our class intervals, for example, 4000, 5000, etc. The class
frequency is then the number of observations that are greater than or equal to the
lower bound, and strictly less than the upper bound. For example, one interval
might hold times from 4000 to 4999 milliseconds. Using whole numbers as
boundaries avoids a cluttered appearance, and is the practice of many computer
programs that create histograms. Note also that some computer programs label the
middle of each interval rather than the end points.

Histograms can be based on relative frequencies instead of actual frequencies.
Histograms based on relative frequencies show the proportion of scores in each
interval rather than the number of scores. In this case, the Y-axis runs from 0 to 1
(or somewhere in between if there are no extreme proportions). You can change a
histogram based on frequencies to one based on relative frequencies by (a)
dividing each class frequency by the total number of observations, and then (b)
plotting the quotients on the Y-axis (labeled as proportion).

There is more to be said about the widths of the class intervals, sometimes called
bin widths. Your choice of bin width determines the number of class intervals. This
decision, along with the choice of starting point for the first interval, affects the
shape of the histogram. The best advice is to experiment with different choices of
width, and to choose a histogram according to how well it communicates the shape
of the distribution.

Frequency Polygons

Frequency polygons are a graphical device for understanding the shapes of
distributions. They serve the same purpose as histograms, but are especially helpful
for comparing sets of data. Frequency polygons are also a good choice for
displaying cumulative frequency distributions.

To create a frequency polygon, start just as for histograms, by choosing a class
interval. Then draw an X-axis representing the values of the scores in your data.
Mark the middle of each class interval with a tick mark, and label it with the
middle value represented by the class. Draw the Y-axis to indicate the frequency of
each class. Place a point in the middle of each class interval at the height
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corresponding to its frequency. Finally, connect the points. You should include one
class interval below the lowest value in your data and one above the highest value.

The graph will then touch the X-axis on both sides.

A frequency polygon for 642 psychology test scores shown in Figure 12 was

constructed from the frequency table shown in Table 5.

Lower  Upper Cumulative
Limit Limit Count Count
29.5 39.5 0 0
39.5 49.5 3 3
49.5 59.5 10 13
59.5 69.5 53 66
69.5 79.5 107 173
79.5 89.5 147 320
89.5 99.5 130 450
99.5 109.5 78 528
109.5 119.5 59 587
119.5 129.5 36 623
129.5 139.5 11 634
139.5 149.5 6 640
149.5 159.5 1 641
159.5 169.5 1 642
169.5 170.5 0 642

Table 5. Frequency Distribution of Psychology Test Scores

The first label on the X-axis is 35. This represents an interval extending from 29.5
to 39.5. Since the lowest test score is 46, this interval has a frequency of 0. The
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point labeled 45 represents the interval from 39.5 to 49.5. There are three scores in
this interval. There are 147 scores in the interval that surrounds 85.

You can easily discern the shape of the distribution from Figure 13. Most of the
scores are between 65 and 115. It is clear that the distribution is not symmetric
inasmuch as good scores (to the right) trail off more gradually than poor scores (to
the left). In the terminology of Chapter 3 (where we will study shapes of
distributions more systematically), the distribution is skewed.

160
140
120

100

Frequency
[+e]
s ]

&0
40
20

0]
L] 45 55 65 76 85 95 105 115 125 135 145 155 165 175

Test Score
Figure 13. Frequency polygon for the psychology test scores.

A cumulative frequency polygon for the same test scores is shown in Figure 14.
The graph is the same as before except that the Y value for each point is the
number of students in the corresponding class interval plus all numbers in lower
intervals. For example, there are no scores in the interval labeled “35,” three in the
interval “45,” and 10 in the interval “55.” Therefore, the Y value corresponding to
“55” 1s 13. Since 642 students took the test, the cumulative frequency for the last
interval is 642.
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Figure 14. Cumulative frequency polygon for the psychology test scores.

Frequency polygons are useful for comparing distributions. This is achieved by
overlaying the frequency polygons drawn for different data sets. Figure 3 provides
an example. The data come from a task in which the goal is to move a computer
cursor to a target on the screen as fast as possible. On 20 of the trials, the target
was a small rectangle; on the other 20, the target was a large rectangle. Time to
reach the target was recorded on each trial. The two distributions (one for each
target) are plotted together in Figure 15. The figure shows that, although there is
some overlap in times, it generally took longer to move the cursor to the small
target than to the large one.
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Figure 15. Overlaid frequency polygons.
It is also possible to plot two cumulative frequency distributions in the same graph.

This is illustrated in Figure 16 using the same data from the cursor task. The
difference in distributions for the two targets is again evident.
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n
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Figure 16. Overlaid cumulative frequency polygons.
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Box Plofs

We have already discussed techniques for visually representing data (see
histograms and frequency polygons). In this section we present another important
graph, called a box plot. Box plots are useful for identifying outliers and for
comparing distributions. We will explain box plots with the help of data from an
in-class experiment. Students in Introductory Statistics were presented with a page
containing 30 colored rectangles. Their task was to name the colors as quickly as
possible. Their times (in seconds) were recorded. We'll compare the scores for the
16 men and 31 women who participated in the experiment by making separate box
plots for each gender. Such a display is said to involve parallel box plots.

There are several steps in constructing a box plot. The first relies on the 25th, 50th,
and 75th percentiles in the distribution of scores. Figure 17 shows how these three
statistics are used. For each gender we draw a box extending from the 25th
percentile to the 75th percentile. The 50th percentile is drawn inside the box.
Therefore, the bottom of each box is the 25th percentile, the top is the 75th
percentile, and the line in the middle is the 50th percentile. The data for the women
in our sample are shown in Table 6.

14, 15,16,16,17,17,17, 17,17, 18, 18, 18, 18, 18, 18, 19, 19, 19
20, 20, 20, 20, 20, 20, 21, 21, 22, 23, 24, 24, 29
Table 6. Women's times.

For these data, the 25th percentile is 17, the 50th percentile is 19, and the 75th
percentile is 20. For the men (whose data are not shown), the 25th percentile is 19,
the 50th percentile is 22.5, and the 75th percentile is 25.5.

304

25

Time

20

15

F M
Cender

Figure 17. The first step in creating box plots.
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Before proceeding, the terminology in Table 7 is helpful.

| Name Formula Value |
Upper Hinge 75th Percentile 20
Lower Hinge 25th Percentile 17
H-Spread Upper Hinge - Lower Hinge 3
Step 1.5 x H-Spread 4.5
Upper Inner .
Fence Upper Hinge + 1 Step 24.5
Lower Inner Lower Hinge - 1 Step 12.5
Fence
Upper Outer :
Fence Upper Hinge + 2 Steps 29

Lower Outer

Fence Lower Hinge - 2 Steps 8

Upper Adjacent | Largest value below Upper Inner Fence | 24

Smallest value above Lower Inner

Lower Adjacent 14
Fence
Outside Value A value beyond an Inner Fence but not 29
beyond an Outer Fence
Far Out Value A value beyond an Outer Fence None

Table 7. Box plot terms and values for women's times.

Continuing with the box plots, we put “whiskers” above and below each box to
give additional information about the spread of data. Whiskers are vertical lines
that end in a horizontal stroke. Whiskers are drawn from the upper and lower
hinges to the upper and lower adjacent values (24 and 14 for the women's data), as
shown in Figure 18.
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Figure 18. The box plots with the whiskers drawn.

Although we don't draw whiskers all the way to outside or far out values, we still
wish to represent them in our box plots. This is achieved by adding additional
marks beyond the whiskers. Specifically, outside values are indicated by small
“0's” and far out values are indicated by asterisks (*). In our data, there are no far-
out values and just one outside value. This outside value of 29 is for the women

and is shown in Figure 19.
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Figure 19. The box plots with the outside value shown.

There is one more mark to include in box plots (although sometimes it is omitted).
We indicate the mean score for a group by inserting a plus sign. Figure 20 shows
the result of adding means to our box plots.

30— e E—
e
25—
E —
= +
20
+
15 _—
F 1y
Gender

Figure 20. The completed box plots.
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Figure 20 provides a revealing summary of the data. Since half the scores in a
distribution are between the hinges (recall that the hinges are the 25th and 75th
percentiles), we see that half the women's times are between 17 and 20 seconds
whereas half the men's times are between 19 and 25.5 seconds. We also see that
women generally named the colors faster than the men did, although one woman
was slower than almost all of the men. Figure 21 shows the box plot for the
women's data with detailed labels.

Ouker Fence 259.0 o

Inner Ferce 24 — —  — — — — — — — —_ = =
—71— Upper Adjacent 24.0

Upper Hinge 20.0
Mean 19.2 ’—'; Median 19.0
Lower Hinge 17.0

——— Lower Adjacent 14.0

Figure 21. The box plots for the women's data with detailed labels.

Box plots provide basic information about a distribution. For example, a
distribution with a positive skew would have a longer whisker in the positive
direction than in the negative direction. A larger mean than median would also
indicate a positive skew. Box plots are good at portraying extreme values and are
especially good at showing differences between distributions. However, many of
the details of a distribution are not revealed in a box plot and to examine these
details one should use create a histogram and/or a stem and leaf display.

Bar Charfs

In the section on qualitative variables, we saw how bar charts could be used to
illustrate the frequencies of different categories. For example, the bar chart shown
in Figure 22 shows how many purchasers of iMac computers were previous
Macintosh users, previous Windows users, and new computer purchasers.
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Figure 22. iMac buyers as a function of previous computer ownership.

In this section we show how bar charts can be used to present other kinds of
quantitative information, not just frequency counts. The bar chart in Figure 23
shows the percent increases in the Dow Jones, Standard and Poor 500 (S & P), and
Nasdaq stock indexes from May 24th 2000 to May 24th 2001. Notice that both the
S & P and the Nasdaq had “negative increases” which means that they decreased in
value. In this bar chart, the Y-axis is not frequency but rather the signed quantity

percentage increase.

15

?-5 -

0
I

Percent Increase
4
N

-15
-22.5
-30
Dow Jones S&P MNasdag
Figure 23. Percent increase in three stock indexes from May 24th 2000 to
May 24th 2001.
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Bar charts are particularly effective for showing change over time. Figure 24, for
example, shows the percent increase in the Consumer Price Index (CPI) over four
three-month periods. The fluctuation in inflation is apparent in the graph.

4.5

CPI % Increase

&
o

July 2000 October 2000 Jarigry 2001 Apil 2001

Figure 24. Percent change in the CPI over time. Each bar represents percent
increase for the three months ending at the date indicated.

Bar charts are often used to compare the means of different experimental
conditions. Figure 4 shows the mean time it took one of us (DL) to move the cursor
to either a small target or a large target. On average, more time was required for
small targets than for large ones.

800

Mean Time {msec)
i &
e e
= =

Ped
=
=

0
Small Target Large Target

Figure 25. Bar chart showing the means for the two conditions.
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Although bar charts can display means, we do not recommend them for this
purpose. Box plots should be used instead since they provide more information
than bar charts without taking up more space. For example, a box plot of the
cursor-movement data is shown in Figure 26. You can see that Figure 26 reveals
more about the distribution of movement times than does Figure 25.

L1100

1000+

900+

800~

Time

700+

600+

500+

400
Small Large

Target Size

Figure 26. Box plots of times to move the cursor to the small and large
targets.

The section on qualitative variables presented earlier in this chapter discussed the
use of bar charts for comparing distributions. Some common graphical mistakes
were also noted. The earlier discussion applies equally well to the use of bar charts
to display quantitative variables.

Line Graphs

A line graph is a bar graph with the tops of the bars represented by points joined by
lines (the rest of the bar is suppressed). For example, Figure 27 was presented in
the section on bar charts and shows changes in the Consumer Price Index (CPI)
over time.
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Figure 27. A bar chart of the percent change in the CPI over time. Each bar
represents percent increase for the three months ending at the date
indicated.

CPl % Increase

—
o

A line graph of these same data is shown in Figure 28. Although the figures are

similar, the line graph emphasizes the change from period to period.
45

35

25

CPl % Increase

1.5

0.5

0
July 2000 October 2000 January 2001 April 2001

Figure 28. A line graph of the percent change in the CPI over time. Each
point represents percent increase for the three months ending at the

date indicated.
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Line graphs are appropriate only when both the X- and Y-axes display ordered
(rather than qualitative) variables. Although bar charts can also be used in this
situation, line graphs are generally better at comparing changes over time. Figure
29, for example, shows percent increases and decreases in five components of the
CPI. The figure makes it easy to see that medical costs had a steadier progression
than the other components. Although you could create an analogous bar chart, its
interpretation would not be as easy.

8

Housing

Medical Care

CPl % Increase

Food and Beverage

Recreation

Transportation

July 2000 October 2000 January 2001 April 2001

Figure 29. A line graph of the percent change in five components of the CPI
over time.

Let us stress that it is misleading to use a line graph when the X-axis contains
merely qualitative variables. Figure 30 inappropriately shows a line graph of the
card game data from Yahoo, discussed in the section on qualitative variables. The
defect in Figure 30 is that it gives the false impression that the games are naturally
ordered in a numerical way.
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Figure 30. A line graph, inappropriately used, depicting the number of people
playing different card games on Wednesday and Sunday.

The Shape of Distribution

Finally, it is useful to present discussion on how we describe the shapes of
distributions, which we will revisit in the next chapter to learn how different
shapes affect our numerical descriptors of data and distributions.

The primary characteristic we are concerned about when assessing the shape of a
distribution is whether the distribution is symmetrical or skewed. A symmetrical
distribution, as the name suggests, can be cut down the center to form 2 mirror
images. Although in practice we will never get a perfectly symmetrical
distribution, we would like our data to be as close to symmetrical as possible for
reasons we delve into in Chapter 3. Many types of distributions are symmetrical,
but by far the most common and pertinent distribution at this point is the normal
distribution, shown in Figure 31. Notice that although the symmetry is not perfect
(for instance, the bar just to the right of the center is taller than the one just to the
left), the two sides are roughly the same shape. The normal distribution has a
single peak, known as the center, and two tails that extend out equally, forming
what is known as a bell shape or bell curve.
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Figure 31. A symmetrical distribution

Symmetrical distributions can also have multiple peaks. Figure 32 shows a
bimodal distribution, named for the two peaks that lie roughly symmetrically on
either side of the center point. As we will see in the next chapter, this is not a
particularly desirable characteristic of our data, and, worse, this is a relatively
difficult characteristic to detect numerically. Thus, it is important to visualize your
data before moving ahead with any formal analyses.

[ | [ ]

Figure 32. A bimodal distribution
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Distributions that are not symmetrical also come in many forms, more than can be
described here. The most common asymmetry to be encountered is referred to as
skew, in which one of the two tails of the distribution is disproportionately longer
than the other. This property can affect the value of the averages we use in our
analyses and make them an inaccurate representation of our data, which causes
many problems.

Skew can either be positive or negative (also known as right or left, respectively),
based on which tail is longer. It is very easy to get the two confused at first; many
students want to describe the skew by where the bulk of the data (larger portion of
the histogram, known as the body) is placed, but the correct determination is based
on which tail is longer. You can think of the tail as an arrow: whichever direction
the arrow is pointing is the direction of the skew. Figures 33 and 34 show positive
(right) and negative (left) skew, respectively.

Positive Skew

Figure 33. A positively skewed distribution
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Negative Skew

Figure 34. A negatively skewed distribution

Exercises — Ch. 2
1. Name some ways to graph gquantitative variables and some ways to graph
qualitative variables.
2. Given the following data, construct a pie chart and a bar chart. Which do
you think is the more appropriate or useful way to display the data?
Favorite Movie Genre Freq.

Comedy 14
Horror 9
Romance 8
Action 12

3. Pretend you are constructing a histogram for describing the distribution of
salaries for individuals who are 40 years or older, but are not yet retired.
a. What is on the Y-axis? Explain.
b. What is on the X-axis? Explain.
c. What would be the probable shape of the salary distribution? Explain
why.
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4. A graph appears below showing the number of adults and children who
prefer each type of soda. There were 130 adults and kids surveyed. Discuss
some ways in which the graph below could be improved.

45
40
35 -
O Kids
307 m Adults

23 1

20 -

Coke Diet Coke Sprite Cherry
Coke

Preferred Soda

5. Which of the box plots on the graph has a large positive skew? Which has a

large negative skew?
+

*

+
1 I e

6. Create a histogram of the following data representing how many shows
children said they watch each day:
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Number of TV Shows Frequency

0 2
1 18
2 36
3 /
4 3

7. Explain the differences between bar charts and histograms. When would
each be used?
8. Draw a histogram of a distribution that is
a. Negatively skewed
b. Symmetrical
c. Positively skewed
9. Based on the pie chart below, which was made from a sample of 300
students, construct a frequency table of college majors.

College Majors

m Psychology mBiology m Chemistry Physics

10.Create a histogram of the following data. Label the tails and body and
determine if it is skewed (and direction, if so) or symmetrical.
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Hours worked per week  Proportion

0-10 4
10-20 8
20-30 11
30-40 51
40-50 12
50-60 9

60+ 5

Answers to Odd-Numbered Exercises — Ch. 2

1. Qualitative variables are displayed using pie charts and bar charts.
Quantitative variables are displayed as box plots, histograms, etc.
3. [You do not need to draw the histogram, only describe it below]

a. The Y-axis would have the frequency or proportion because this is
always the case in histograms
b. The X-axis has income, because this is out quantitative variable of

interest

c. Because most income data are positively skewed, this histogram

would likely be skewed positively too

5. Chart b has the positive skew because the outliers (dots and asterisks) are on
the upper (higher) end; chart ¢ has the negative skew because the outliers are

on the lower end.

7. In bar charts, the bars do not touch; in histograms, the bars do touch. Bar
charts are appropriate for qualitative variables, whereas histograms are better
for quantitative variables.

9. Use the following dataset for the computations below:

Major Freq
Psychology | 144
Biology 120
Chemistry | 24
Physics 12
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Chapter 3: Measures of Cenftral
Tendency and Spread

Now that we have visualized our data to understand its shape, we can begin with
numerical analyses. The descriptive statistics presented in this chapter serve to
describe the distribution of our data objectively and mathematically — out first step
into statistical analysis! The topics here will serve as the basis for everything we do
in the rest of the course.

What is Central Tendencye

What is “central tendency,” and why do we want to know the central tendency of a
group of scores? Let us first try to answer these questions intuitively. Then we will
proceed to a more formal discussion.

Imagine this situation: You are in a class with just four other students, and the five
of you took a 5-point pop quiz. Today your instructor is walking around the room,
handing back the quizzes. She stops at your desk and hands you your paper.
Written in bold black ink on the front is “3/5.” How do you react? Are you happy
with your score of 3 or disappointed? How do you decide? You might calculate
your percentage correct, realize it is 60%, and be appalled. But it is more likely
that when deciding how to react to your performance, you will want additional
information. What additional information would you like?

If you are like most students, you will immediately ask your neighbors, “Whad'ja
get?” and then ask the instructor, “How did the class do?” In other words, the
additional information you want is how your quiz score compares to other students'
scores. You therefore understand the importance of comparing your score to the
class distribution of scores. Should your score of 3 turn out to be among the higher
scores, then you'll be pleased after all. On the other hand, if 3 is among the lower
scores in the class, you won't be quite so happy.

This idea of comparing individual scores to a distribution of scores is fundamental
to statistics. So let's explore it further, using the same example (the pop quiz you
took with your four classmates). Three possible outcomes are shown in Table 1.
They are labeled “Dataset A,” “Dataset B,” and “Dataset C.” Which of the three
datasets would make you happiest? In other words, in comparing your score with
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your fellow students' scores, in which dataset would your score of 3 be the most
impressive?

In Dataset A, everyone's score is 3. This puts your score at the exact center of the
distribution. You can draw satisfaction from the fact that you did as well as
everyone else. But of course it cuts both ways: everyone else did just as well as
you.

\ Student Dataset A Dataset B Dataset C
You 3 3 3
John's 3 4
Maria's 3 4 2
Shareecia's 3 4 2
Luther's 3 5 1

Table 1. Three possible datasets for the 5-point make-up quiz.

Now consider the possibility that the scores are described as in Dataset B. This is a
depressing outcome even though your score is no different than the one in Dataset
A. The problem is that the other four students had higher grades, putting yours
below the center of the distribution.

Finally, let's look at Dataset C. This is more like it! All of your classmates score
lower than you so your score is above the center of the distribution.

Now let's change the example in order to develop more insight into the center of a
distribution. Figure 1 shows the results of an experiment on memory for chess
positions. Subjects were shown a chess position and then asked to reconstruct it on
an empty chess board. The number of pieces correctly placed was recorded. This
was repeated for two more chess positions. The scores represent the total number
of chess pieces correctly placed for the three chess positions. The maximum
possible score was 89.
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Figure 1. Back-to-back stem and leaf display. The left side shows the
memory scores of the non-players. The right side shows the scores of
the tournament players.

Two groups are compared. On the left are people who don't play chess. On the
right are people who play a great deal (tournament players). It is clear that the
location of the center of the distribution for the non-players is much lower than the
center of the distribution for the tournament players.

We're sure you get the idea now about the center of a distribution. It is time to
move beyond intuition. We need a formal definition of the center of a distribution.
In fact, we'll offer you three definitions! This is not just generosity on our part.
There turn out to be (at least) three different ways of thinking about the center of a
distribution, all of them useful in various contexts. In the remainder of this section
we attempt to communicate the idea behind each concept. In the succeeding
sections we will give statistical measures for these concepts of central tendency.

Definitions of Center
Now we explain the three different ways of defining the center of a distribution.
All three are called measures of central tendency.

Balance Scale

One definition of central tendency is the point at which the distribution is in
balance. Figure 2 shows the distribution of the five numbers 2, 3, 4, 9, 16 placed
upon a balance scale. If each number weighs one pound, and is placed at its
position along the number line, then it would be possible to balance them by
placing a fulcrum at 6.8.
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Figure 2. A balance scale.

For another example, consider the distribution shown in Figure 3. It is balanced by
placing the fulcrum in the geometric middle.

Figure 3. A distribution balanced on the tip of a triangle.

Figure 4 illustrates that the same distribution can't be balanced by placing the
fulcrum to the left of center.

Figure 4. The distribution is not balanced.
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Figure 5 shows an asymmetric distribution. To balance it, we cannot put the
fulcrum halfway between the lowest and highest values (as we did in Figure 3).
Placing the fulcrum at the “half way” point would cause it to tip towards the left.

Figure 5. An asymmetric distribution balanced on the tip of a triangle.

Smallest Absolute Deviation

Another way to define the center of a distribution is based on the concept of the
sum of the absolute deviations (differences). Consider the distribution made up of
the five numbers 2, 3, 4, 9, 16. Let's see how far the distribution is from 10
(picking a number arbitrarily). Table 2 shows the sum of the absolute deviations of
these numbers from the number 10.

. Values Absolute Deviations from 10
2 8
3 7
4 6
9 1
16 6
Sum 28

Table 2. An example of the sum of absolute deviations
The first row of the table shows that the absolute value of the difference between 2

and 10 is &; the second row shows that the absolute difference between 3 and 10 is
7, and similarly for the other rows. When we add up the five absolute deviations,
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we get 28. So, the sum of the absolute deviations from 10 is 28. Likewise, the sum
of the absolute deviations from 5 equals 3 +2 + 1 +4 + 11 = 21. So, the sum of the
absolute deviations from 5 is smaller than the sum of the absolute deviations from
10. In this sense, 5 is closer, overall, to the other numbers than is 10.

We are now in a position to define a second measure of central tendency, this time
in terms of absolute deviations. Specifically, according to our second definition,
the center of a distribution is the number for which the sum of the absolute
deviations is smallest. As we just saw, the sum of the absolute deviations from 10
is 28 and the sum of the absolute deviations from 5 is 21. Is there a value for which
the sum of the absolute deviations is even smaller than 21? Yes. For these data,

there is a value for which the sum of absolute deviations is only 20. See if you can
find it.

Smallest Squared Deviation

We shall discuss one more way to define the center of a distribution. It is based on
the concept of the sum of squared deviations (differences). Again, consider the
distribution of the five numbers 2, 3, 4, 9, 16. Table 3 shows the sum of the
squared deviations of these numbers from the number 10.

Squared Deviations from 10

2 64
3 49
4 36
9 1
16 36
Sum 186

Table 3. An example of the sum of squared deviations.

The first row in the table shows that the squared value of the difference between 2
and 10 is 64; the second row shows that the squared difference between 3 and 10 is
49, and so forth. When we add up all these squared deviations, we get 186.
Changing the target from 10 to 5, we calculate the sum of the squared deviations
from5as9+4+1+16+ 121 =151. So, the sum of the squared deviations from 5
is smaller than the sum of the squared deviations from 10. Is there a value for
which the sum of the squared deviations is even smaller than 151? Yes, it is

pg. 78



possible to reach 134.8. Can you find the target number for which the sum of
squared deviations is 134.8?

The target that minimizes the sum of squared deviations provides another useful
definition of central tendency (the last one to be discussed in this section). It can be
challenging to find the value that minimizes this sum.

Measures of Central Tendency

In the previous section we saw that there are several ways to define central
tendency. This section defines the three most common measures of central
tendency: the mean, the median, and the mode. The relationships among these
measures of central tendency and the definitions given in the previous section will
probably not be obvious to you.

This section gives only the basic definitions of the mean, median and mode. A
further discussion of the relative merits and proper applications of these statistics is
presented in a later section.

Arithmetic Mean
The arithmetic mean 1s the most common measure of central tendency. It is simply
the sum of the numbers divided by the number of numbers. The symbol “p”
(pronounced “mew”) is used for the mean of a population. The symbol “X”
(pronounced “X-bar”) is used for the mean of a sample. The formula for p is
shown below:

> X

H="N

where ZX is the sum of all the numbers in the population and N is the number of
numbers in the population.

The formula for X is essentially identical:

_ XX

=W
where XX is the sum of all the numbers in the sample and N is the number of
numbers in the sample. The only distinction between these two equations is
whether we are referring to the population (in which case we use the parameter )
or a sample of that population (in which case we use the statistic X).
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As an example, the mean of the numbers 1, 2, 3, 6, 8 is 20/5 = 4 regardless of
whether the numbers constitute the entire population or just a sample from the
population.

Table 4 shows the number of touchdown (TD) passes thrown by each of the 31
teams in the National Football League in the 2000 season. The mean number of
touchdown passes thrown is 20.45 as shown below.
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37,33, 33,32, 29, 28,
28,23,22,22,22,21,
21,21, 20, 20, 19, 19,
18,18, 18, 18, 16, 15,
14, 14, 14,12, 12,9, 6

Table 4. Number of touchdown passes.

Although the arithmetic mean is not the only “mean” (there is also a geometric
mean, a harmonic mean, and many others that are all beyond the scope of this
course), it is by far the most commonly used. Therefore, if the term “mean” is used
without specifying whether it is the arithmetic mean, the geometric mean, or some
other mean, it is assumed to refer to the arithmetic mean.

Median

The median is also a frequently used measure of central tendency. The median is
the midpoint of a distribution: the same number of scores is above the median as
below it. For the data in Table 1, there are 31 scores. The 16th highest score (which
equals 20) is the median because there are 15 scores below the 16th score and 15
scores above the 16th score. The median can also be thought of as the 50th
percentile.

When there is an odd number of numbers, the median is simply the middle
number. For example, the median of 2, 4, and 7 is 4. When there is an even number
of numbers, the median 1s the mean of the two middle numbers. Thus, the median
of the numbers 2,4, 7, 12 is:

4+7_55
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When there are numbers with the same values, each appearance of that value gets
counted. For example, in the set of numbers 1, 3, 4, 4, 5, 8, and 9, the median is 4
because there are three numbers (1, 3, and 4) below it and three numbers (5, 8, and
9) above it. If we only counted 4 once, the median would incorrectly be calculated
at 4.5 (4+5 divided by 2). When in doubt, writing out all of the numbers in order
and marking them off one at a time from the top and bottom will always lead you
to the correct answer.

Mode

The mode is the most frequently occurring value in the dataset. For the data in
Table 1, the mode is 18 since more teams (4) had 18 touchdown passes than any
other number of touchdown passes. With continuous data, such as response time
measured to many decimals, the frequency of each value is one since no two scores
will be exactly the same (see discussion of continuous variables). Therefore the
mode of continuous data is normally computed from a grouped frequency
distribution. Table 2 shows a grouped frequency distribution for the target response
time data. Since the interval with the highest frequency is 600-700, the mod